- 发布于
Redis 缓存架构设计:高性能缓存系统的构建与优化
- 作者

- 姓名
- 全能波
- GitHub
- @weicracker
Redis 缓存架构设计:高性能缓存系统的构建与优化
Redis 是一个高性能的内存数据结构存储系统,广泛用作缓存、消息队列和数据库。本文将深入探讨 Redis 的架构设计、缓存策略和性能优化。
Redis 基础架构
数据结构与应用场景
// Redis 客户端封装
const redis = require('redis')
class RedisClient {
constructor(config = {}) {
this.client = redis.createClient({
host: config.host || 'localhost',
port: config.port || 6379,
password: config.password,
db: config.db || 0,
retry_strategy: (options) => {
if (options.error && options.error.code === 'ECONNREFUSED') {
return new Error('Redis 服务器拒绝连接')
}
if (options.total_retry_time > 1000 * 60 * 60) {
return new Error('重试时间已用尽')
}
if (options.attempt > 10) {
return undefined
}
return Math.min(options.attempt * 100, 3000)
},
})
this.client.on('error', (err) => {
console.error('Redis 连接错误:', err)
})
this.client.on('connect', () => {
console.log('Redis 连接成功')
})
}
// String 操作 - 简单缓存
async setCache(key, value, ttl = 3600) {
try {
const serializedValue = JSON.stringify(value)
if (ttl > 0) {
await this.client.setex(key, ttl, serializedValue)
} else {
await this.client.set(key, serializedValue)
}
return true
} catch (error) {
console.error('设置缓存失败:', error)
return false
}
}
async getCache(key) {
try {
const value = await this.client.get(key)
return value ? JSON.parse(value) : null
} catch (error) {
console.error('获取缓存失败:', error)
return null
}
}
// Hash 操作 - 对象缓存
async setHashCache(key, field, value, ttl = 3600) {
try {
await this.client.hset(key, field, JSON.stringify(value))
if (ttl > 0) {
await this.client.expire(key, ttl)
}
return true
} catch (error) {
console.error('设置 Hash 缓存失败:', error)
return false
}
}
async getHashCache(key, field) {
try {
const value = await this.client.hget(key, field)
return value ? JSON.parse(value) : null
} catch (error) {
console.error('获取 Hash 缓存失败:', error)
return null
}
}
async getAllHashCache(key) {
try {
const hash = await this.client.hgetall(key)
const result = {}
for (const [field, value] of Object.entries(hash)) {
result[field] = JSON.parse(value)
}
return result
} catch (error) {
console.error('获取所有 Hash 缓存失败:', error)
return {}
}
}
// List 操作 - 队列和栈
async pushToList(key, value, direction = 'left') {
try {
const serializedValue = JSON.stringify(value)
if (direction === 'left') {
return await this.client.lpush(key, serializedValue)
} else {
return await this.client.rpush(key, serializedValue)
}
} catch (error) {
console.error('推入列表失败:', error)
return 0
}
}
async popFromList(key, direction = 'left') {
try {
let value
if (direction === 'left') {
value = await this.client.lpop(key)
} else {
value = await this.client.rpop(key)
}
return value ? JSON.parse(value) : null
} catch (error) {
console.error('弹出列表失败:', error)
return null
}
}
// Set 操作 - 去重集合
async addToSet(key, ...values) {
try {
const serializedValues = values.map((v) => JSON.stringify(v))
return await this.client.sadd(key, ...serializedValues)
} catch (error) {
console.error('添加到集合失败:', error)
return 0
}
}
async getSetMembers(key) {
try {
const members = await this.client.smembers(key)
return members.map((m) => JSON.parse(m))
} catch (error) {
console.error('获取集合成员失败:', error)
return []
}
}
// Sorted Set 操作 - 排行榜
async addToSortedSet(key, score, member) {
try {
const serializedMember = JSON.stringify(member)
return await this.client.zadd(key, score, serializedMember)
} catch (error) {
console.error('添加到有序集合失败:', error)
return 0
}
}
async getSortedSetRange(key, start = 0, stop = -1, withScores = false) {
try {
let result
if (withScores) {
result = await this.client.zrange(key, start, stop, 'WITHSCORES')
const parsed = []
for (let i = 0; i < result.length; i += 2) {
parsed.push({
member: JSON.parse(result[i]),
score: parseFloat(result[i + 1]),
})
}
return parsed
} else {
result = await this.client.zrange(key, start, stop)
return result.map((m) => JSON.parse(m))
}
} catch (error) {
console.error('获取有序集合范围失败:', error)
return []
}
}
}
缓存策略实现
// 缓存策略管理器
class CacheStrategyManager {
constructor(redisClient) {
this.redis = redisClient
this.defaultTTL = 3600 // 1小时
}
// Cache-Aside 模式
async cacheAside(key, fetchFunction, ttl = this.defaultTTL) {
try {
// 1. 先从缓存获取
let data = await this.redis.getCache(key)
if (data !== null) {
console.log(`缓存命中: ${key}`)
return data
}
// 2. 缓存未命中,从数据源获取
console.log(`缓存未命中: ${key}`)
data = await fetchFunction()
// 3. 将数据写入缓存
if (data !== null && data !== undefined) {
await this.redis.setCache(key, data, ttl)
console.log(`数据已缓存: ${key}`)
}
return data
} catch (error) {
console.error('Cache-Aside 策略执行失败:', error)
// 缓存失败时直接返回数据源数据
return await fetchFunction()
}
}
// Write-Through 模式
async writeThrough(key, data, writeFunction, ttl = this.defaultTTL) {
try {
// 1. 同时写入缓存和数据源
const [cacheResult, dbResult] = await Promise.all([
this.redis.setCache(key, data, ttl),
writeFunction(data),
])
if (!cacheResult) {
console.warn(`缓存写入失败: ${key}`)
}
return dbResult
} catch (error) {
console.error('Write-Through 策略执行失败:', error)
throw error
}
}
// Write-Behind 模式
async writeBehind(key, data, writeFunction, ttl = this.defaultTTL) {
try {
// 1. 立即写入缓存
await this.redis.setCache(key, data, ttl)
// 2. 异步写入数据源
setImmediate(async () => {
try {
await writeFunction(data)
console.log(`异步写入完成: ${key}`)
} catch (error) {
console.error(`异步写入失败: ${key}`, error)
// 可以实现重试机制或将失败的写入加入队列
}
})
return data
} catch (error) {
console.error('Write-Behind 策略执行失败:', error)
throw error
}
}
// 多级缓存
async multiLevelCache(key, fetchFunction, l1TTL = 300, l2TTL = 3600) {
const l1Key = `l1:${key}`
const l2Key = `l2:${key}`
try {
// Level 1 缓存检查(短期缓存)
let data = await this.redis.getCache(l1Key)
if (data !== null) {
console.log(`L1 缓存命中: ${key}`)
return data
}
// Level 2 缓存检查(长期缓存)
data = await this.redis.getCache(l2Key)
if (data !== null) {
console.log(`L2 缓存命中: ${key}`)
// 将数据提升到 L1 缓存
await this.redis.setCache(l1Key, data, l1TTL)
return data
}
// 缓存未命中,从数据源获取
console.log(`缓存完全未命中: ${key}`)
data = await fetchFunction()
if (data !== null && data !== undefined) {
// 同时写入两级缓存
await Promise.all([
this.redis.setCache(l1Key, data, l1TTL),
this.redis.setCache(l2Key, data, l2TTL),
])
}
return data
} catch (error) {
console.error('多级缓存策略执行失败:', error)
return await fetchFunction()
}
}
// 缓存预热
async warmupCache(warmupTasks) {
console.log('开始缓存预热...')
const results = []
for (const task of warmupTasks) {
try {
const { key, fetchFunction, ttl = this.defaultTTL } = task
const data = await fetchFunction()
if (data !== null && data !== undefined) {
await this.redis.setCache(key, data, ttl)
results.push({ key, status: 'success' })
console.log(`预热成功: ${key}`)
} else {
results.push({ key, status: 'no_data' })
}
} catch (error) {
console.error(`预热失败: ${task.key}`, error)
results.push({ key: task.key, status: 'error', error: error.message })
}
}
console.log('缓存预热完成')
return results
}
}
高级缓存模式
1. 分布式锁实现
// 分布式锁管理器
class DistributedLockManager {
constructor(redisClient) {
this.redis = redisClient
}
// 获取分布式锁
async acquireLock(lockKey, lockValue, expireTime = 30000) {
try {
// 使用 SET NX EX 命令实现原子性锁获取
const result = await this.redis.client.set(lockKey, lockValue, 'PX', expireTime, 'NX')
return result === 'OK'
} catch (error) {
console.error('获取分布式锁失败:', error)
return false
}
}
// 释放分布式锁(使用 Lua 脚本确保原子性)
async releaseLock(lockKey, lockValue) {
const luaScript = `
if redis.call("get", KEYS[1]) == ARGV[1] then
return redis.call("del", KEYS[1])
else
return 0
end
`
try {
const result = await this.redis.client.eval(luaScript, 1, lockKey, lockValue)
return result === 1
} catch (error) {
console.error('释放分布式锁失败:', error)
return false
}
}
// 带重试的锁获取
async acquireLockWithRetry(
lockKey,
lockValue,
expireTime = 30000,
maxRetries = 10,
retryDelay = 100
) {
for (let i = 0; i < maxRetries; i++) {
const acquired = await this.acquireLock(lockKey, lockValue, expireTime)
if (acquired) {
return true
}
if (i < maxRetries - 1) {
await new Promise((resolve) => setTimeout(resolve, retryDelay))
}
}
return false
}
// 自动续期锁
async acquireLockWithRenewal(lockKey, lockValue, expireTime = 30000, renewalInterval = 10000) {
const acquired = await this.acquireLock(lockKey, lockValue, expireTime)
if (!acquired) {
return null
}
const renewalTimer = setInterval(async () => {
try {
const luaScript = `
if redis.call("get", KEYS[1]) == ARGV[1] then
return redis.call("pexpire", KEYS[1], ARGV[2])
else
return 0
end
`
const result = await this.redis.client.eval(luaScript, 1, lockKey, lockValue, expireTime)
if (result === 0) {
console.warn(`锁续期失败,锁可能已被其他进程获取: ${lockKey}`)
clearInterval(renewalTimer)
}
} catch (error) {
console.error('锁续期失败:', error)
clearInterval(renewalTimer)
}
}, renewalInterval)
return {
release: async () => {
clearInterval(renewalTimer)
return await this.releaseLock(lockKey, lockValue)
},
}
}
}
// 使用示例
class CacheWithLock {
constructor(redisClient) {
this.redis = redisClient
this.lockManager = new DistributedLockManager(redisClient)
}
// 防止缓存击穿的安全缓存更新
async safeUpdateCache(key, fetchFunction, ttl = 3600) {
const lockKey = `lock:${key}`
const lockValue = `${Date.now()}-${Math.random()}`
try {
// 先尝试从缓存获取
let data = await this.redis.getCache(key)
if (data !== null) {
return data
}
// 获取分布式锁
const lockAcquired = await this.lockManager.acquireLockWithRetry(
lockKey,
lockValue,
30000, // 30秒过期
5, // 最多重试5次
200 // 重试间隔200ms
)
if (!lockAcquired) {
// 获取锁失败,再次尝试从缓存获取(可能其他进程已更新)
data = await this.redis.getCache(key)
return data !== null ? data : await fetchFunction()
}
try {
// 双重检查,防止重复计算
data = await this.redis.getCache(key)
if (data !== null) {
return data
}
// 从数据源获取数据
data = await fetchFunction()
if (data !== null && data !== undefined) {
await this.redis.setCache(key, data, ttl)
}
return data
} finally {
// 释放锁
await this.lockManager.releaseLock(lockKey, lockValue)
}
} catch (error) {
console.error('安全缓存更新失败:', error)
return await fetchFunction()
}
}
}
2. 缓存雪崩防护
// 缓存雪崩防护管理器
class CacheAvalancheProtection {
constructor(redisClient) {
this.redis = redisClient
this.lockManager = new DistributedLockManager(redisClient)
}
// 随机TTL防止同时过期
getRandomTTL(baseTTL, variance = 0.2) {
const randomFactor = 1 + (Math.random() - 0.5) * 2 * variance
return Math.floor(baseTTL * randomFactor)
}
// 分层过期时间
getLayeredTTL(layer, baseTTL = 3600) {
const multipliers = {
hot: 1, // 热点数据
warm: 2, // 温数据
cold: 4, // 冷数据
}
const multiplier = multipliers[layer] || 1
return this.getRandomTTL(baseTTL * multiplier)
}
// 缓存预加载
async preloadCache(keys, fetchFunctions, layer = 'warm') {
const results = []
for (let i = 0; i < keys.length; i++) {
const key = keys[i]
const fetchFunction = fetchFunctions[i]
try {
const data = await fetchFunction()
const ttl = this.getLayeredTTL(layer)
await this.redis.setCache(key, data, ttl)
results.push({ key, status: 'success', ttl })
} catch (error) {
console.error(`预加载失败: ${key}`, error)
results.push({ key, status: 'error', error: error.message })
}
}
return results
}
// 熔断器模式
async circuitBreakerCache(key, fetchFunction, options = {}) {
const {
ttl = 3600,
failureThreshold = 5,
recoveryTimeout = 60000,
fallbackData = null,
} = options
const circuitKey = `circuit:${key}`
const failureCountKey = `failures:${key}`
try {
// 检查熔断器状态
const circuitState = await this.redis.getCache(circuitKey)
if (circuitState === 'OPEN') {
console.log(`熔断器开启,返回降级数据: ${key}`)
return fallbackData
}
// 尝试从缓存获取
let data = await this.redis.getCache(key)
if (data !== null) {
// 重置失败计数
await this.redis.client.del(failureCountKey)
return data
}
// 从数据源获取
try {
data = await fetchFunction()
if (data !== null && data !== undefined) {
const randomTTL = this.getRandomTTL(ttl)
await this.redis.setCache(key, data, randomTTL)
// 重置失败计数
await this.redis.client.del(failureCountKey)
}
return data
} catch (fetchError) {
// 增加失败计数
const failureCount = await this.redis.client.incr(failureCountKey)
await this.redis.client.expire(failureCountKey, recoveryTimeout)
if (failureCount >= failureThreshold) {
// 开启熔断器
await this.redis.setCache(circuitKey, 'OPEN', recoveryTimeout)
console.log(`熔断器开启: ${key}`)
}
throw fetchError
}
} catch (error) {
console.error('熔断器缓存执行失败:', error)
return fallbackData
}
}
}
3. 缓存一致性保障
// 缓存一致性管理器
class CacheConsistencyManager {
constructor(redisClient) {
this.redis = redisClient
this.subscribers = new Map()
}
// 发布缓存失效消息
async invalidateCache(pattern, reason = 'update') {
try {
const message = {
pattern,
reason,
timestamp: Date.now(),
server: process.env.SERVER_ID || 'unknown',
}
await this.redis.client.publish('cache:invalidate', JSON.stringify(message))
console.log(`发布缓存失效消息: ${pattern}`)
} catch (error) {
console.error('发布缓存失效消息失败:', error)
}
}
// 订阅缓存失效消息
async subscribeCacheInvalidation() {
const subscriber = this.redis.client.duplicate()
subscriber.on('message', async (channel, message) => {
if (channel === 'cache:invalidate') {
try {
const { pattern, reason, timestamp, server } = JSON.parse(message)
// 避免处理自己发送的消息
if (server === (process.env.SERVER_ID || 'unknown')) {
return
}
console.log(`收到缓存失效消息: ${pattern}, 原因: ${reason}`)
// 删除匹配的缓存键
await this.deleteByPattern(pattern)
// 通知订阅者
if (this.subscribers.has(pattern)) {
const callbacks = this.subscribers.get(pattern)
callbacks.forEach((callback) => {
try {
callback({ pattern, reason, timestamp })
} catch (error) {
console.error('缓存失效回调执行失败:', error)
}
})
}
} catch (error) {
console.error('处理缓存失效消息失败:', error)
}
}
})
await subscriber.subscribe('cache:invalidate')
return subscriber
}
// 按模式删除缓存
async deleteByPattern(pattern) {
try {
const keys = await this.redis.client.keys(pattern)
if (keys.length > 0) {
await this.redis.client.del(...keys)
console.log(`删除缓存键: ${keys.length} 个`)
}
} catch (error) {
console.error('按模式删除缓存失败:', error)
}
}
// 注册缓存失效监听器
onCacheInvalidate(pattern, callback) {
if (!this.subscribers.has(pattern)) {
this.subscribers.set(pattern, [])
}
this.subscribers.get(pattern).push(callback)
}
// 版本化缓存
async versionedCache(key, version, data, ttl = 3600) {
const versionedKey = `${key}:v${version}`
const versionKey = `${key}:version`
try {
// 设置版本化数据
await this.redis.setCache(versionedKey, data, ttl)
// 更新版本号
await this.redis.setCache(versionKey, version, ttl)
return true
} catch (error) {
console.error('设置版本化缓存失败:', error)
return false
}
}
async getVersionedCache(key) {
try {
// 获取当前版本号
const version = await this.redis.getCache(`${key}:version`)
if (version === null) {
return null
}
// 获取版本化数据
const versionedKey = `${key}:v${version}`
return await this.redis.getCache(versionedKey)
} catch (error) {
console.error('获取版本化缓存失败:', error)
return null
}
}
}
性能监控与优化
1. 缓存性能监控
// 缓存性能监控器
class CachePerformanceMonitor {
constructor(redisClient) {
this.redis = redisClient
this.metrics = {
hits: 0,
misses: 0,
errors: 0,
totalRequests: 0,
responseTime: [],
}
this.startTime = Date.now()
}
// 记录缓存命中
recordHit(responseTime) {
this.metrics.hits++
this.metrics.totalRequests++
this.recordResponseTime(responseTime)
}
// 记录缓存未命中
recordMiss(responseTime) {
this.metrics.misses++
this.metrics.totalRequests++
this.recordResponseTime(responseTime)
}
// 记录错误
recordError() {
this.metrics.errors++
this.metrics.totalRequests++
}
// 记录响应时间
recordResponseTime(time) {
this.metrics.responseTime.push(time)
// 只保留最近1000次的响应时间
if (this.metrics.responseTime.length > 1000) {
this.metrics.responseTime.shift()
}
}
// 获取性能统计
getStats() {
const hitRate =
this.metrics.totalRequests > 0
? ((this.metrics.hits / this.metrics.totalRequests) * 100).toFixed(2)
: 0
const avgResponseTime =
this.metrics.responseTime.length > 0
? (
this.metrics.responseTime.reduce((a, b) => a + b, 0) / this.metrics.responseTime.length
).toFixed(2)
: 0
const p95ResponseTime = this.getPercentile(this.metrics.responseTime, 0.95)
const p99ResponseTime = this.getPercentile(this.metrics.responseTime, 0.99)
return {
hitRate: `${hitRate}%`,
totalRequests: this.metrics.totalRequests,
hits: this.metrics.hits,
misses: this.metrics.misses,
errors: this.metrics.errors,
avgResponseTime: `${avgResponseTime}ms`,
p95ResponseTime: `${p95ResponseTime}ms`,
p99ResponseTime: `${p99ResponseTime}ms`,
uptime: `${Math.floor((Date.now() - this.startTime) / 1000)}s`,
}
}
// 计算百分位数
getPercentile(arr, percentile) {
if (arr.length === 0) return 0
const sorted = [...arr].sort((a, b) => a - b)
const index = Math.ceil(sorted.length * percentile) - 1
return sorted[index].toFixed(2)
}
// 监控装饰器
monitor(originalMethod) {
const monitor = this
return async function (...args) {
const startTime = Date.now()
try {
const result = await originalMethod.apply(this, args)
const responseTime = Date.now() - startTime
if (result !== null && result !== undefined) {
monitor.recordHit(responseTime)
} else {
monitor.recordMiss(responseTime)
}
return result
} catch (error) {
monitor.recordError()
throw error
}
}
}
// Redis 性能监控
async getRedisStats() {
try {
const info = await this.redis.client.info()
const stats = {}
info.split('\r\n').forEach((line) => {
if (line.includes(':')) {
const [key, value] = line.split(':')
stats[key] = value
}
})
return {
connectedClients: stats.connected_clients,
usedMemory: stats.used_memory_human,
usedMemoryPeak: stats.used_memory_peak_human,
keyspaceHits: stats.keyspace_hits,
keyspaceMisses: stats.keyspace_misses,
hitRate:
stats.keyspace_hits && stats.keyspace_misses
? (
(stats.keyspace_hits /
(parseInt(stats.keyspace_hits) + parseInt(stats.keyspace_misses))) *
100
).toFixed(2) + '%'
: '0%',
totalCommandsProcessed: stats.total_commands_processed,
instantaneousOpsPerSec: stats.instantaneous_ops_per_sec,
}
} catch (error) {
console.error('获取 Redis 统计信息失败:', error)
return {}
}
}
// 定期报告性能
startPerformanceReporting(interval = 60000) {
setInterval(async () => {
const appStats = this.getStats()
const redisStats = await this.getRedisStats()
console.log('=== 缓存性能报告 ===')
console.log('应用层统计:', appStats)
console.log('Redis 统计:', redisStats)
console.log('==================')
}, interval)
}
}
2. 缓存优化建议
// 缓存优化建议器
class CacheOptimizationAdvisor {
constructor(redisClient, monitor) {
this.redis = redisClient
this.monitor = monitor
}
// 分析缓存使用情况并给出建议
async analyzeAndAdvise() {
const suggestions = []
try {
// 1. 分析命中率
const stats = this.monitor.getStats()
const hitRate = parseFloat(stats.hitRate)
if (hitRate < 80) {
suggestions.push({
type: 'hit_rate',
severity: 'high',
message: `缓存命中率较低 (${stats.hitRate}),建议检查缓存策略和TTL设置`,
})
}
// 2. 分析响应时间
const avgResponseTime = parseFloat(stats.avgResponseTime)
if (avgResponseTime > 100) {
suggestions.push({
type: 'response_time',
severity: 'medium',
message: `平均响应时间较高 (${stats.avgResponseTime}),建议优化数据结构或网络配置`,
})
}
// 3. 分析内存使用
const redisStats = await this.monitor.getRedisStats()
const memoryUsage = redisStats.usedMemory
if (memoryUsage && memoryUsage.includes('G')) {
const usage = parseFloat(memoryUsage)
if (usage > 4) {
suggestions.push({
type: 'memory',
severity: 'high',
message: `内存使用量较高 (${memoryUsage}),建议清理过期数据或增加内存`,
})
}
}
// 4. 分析热点数据
const hotKeys = await this.findHotKeys()
if (hotKeys.length > 0) {
suggestions.push({
type: 'hot_keys',
severity: 'medium',
message: `发现热点数据: ${hotKeys.join(', ')},建议使用集群或读写分离`,
})
}
// 5. 分析过期策略
const expireAnalysis = await this.analyzeExpireStrategy()
if (expireAnalysis.needsOptimization) {
suggestions.push({
type: 'expire_strategy',
severity: 'low',
message: expireAnalysis.message,
})
}
return suggestions
} catch (error) {
console.error('缓存分析失败:', error)
return []
}
}
// 查找热点数据
async findHotKeys() {
try {
// 这里简化实现,实际应该使用 Redis 的 MONITOR 命令或其他工具
const keys = await this.redis.client.keys('*')
const hotKeys = []
// 模拟热点检测逻辑
for (const key of keys.slice(0, 10)) {
const ttl = await this.redis.client.ttl(key)
if (ttl > 3600) {
// TTL 大于1小时的可能是热点数据
hotKeys.push(key)
}
}
return hotKeys
} catch (error) {
console.error('查找热点数据失败:', error)
return []
}
}
// 分析过期策略
async analyzeExpireStrategy() {
try {
const keys = await this.redis.client.keys('*')
let withTTL = 0
let withoutTTL = 0
for (const key of keys) {
const ttl = await this.redis.client.ttl(key)
if (ttl > 0) {
withTTL++
} else if (ttl === -1) {
withoutTTL++
}
}
const total = withTTL + withoutTTL
const noTTLPercentage = total > 0 ? (withoutTTL / total) * 100 : 0
return {
needsOptimization: noTTLPercentage > 20,
message: `${noTTLPercentage.toFixed(1)}% 的键没有设置过期时间,建议设置合适的TTL`,
}
} catch (error) {
console.error('分析过期策略失败:', error)
return { needsOptimization: false, message: '' }
}
}
// 生成优化报告
async generateOptimizationReport() {
const suggestions = await this.analyzeAndAdvise()
const stats = this.monitor.getStats()
const redisStats = await this.monitor.getRedisStats()
return {
timestamp: new Date().toISOString(),
performance: {
application: stats,
redis: redisStats,
},
suggestions: suggestions,
summary: {
totalSuggestions: suggestions.length,
highPriority: suggestions.filter((s) => s.severity === 'high').length,
mediumPriority: suggestions.filter((s) => s.severity === 'medium').length,
lowPriority: suggestions.filter((s) => s.severity === 'low').length,
},
}
}
}
总结
Redis 缓存架构设计需要考虑多个方面:
- 数据结构选择:根据使用场景选择合适的 Redis 数据结构
- 缓存策略:实现 Cache-Aside、Write-Through 等缓存模式
- 高可用性:使用分布式锁、熔断器等保障系统稳定性
- 一致性保障:通过消息发布订阅维护缓存一致性
- 性能监控:持续监控缓存性能并进行优化
掌握这些技能,你就能构建出高性能、高可用的 Redis 缓存系统!
Redis 是现代高性能应用的核心组件,值得深入学习和实践。